

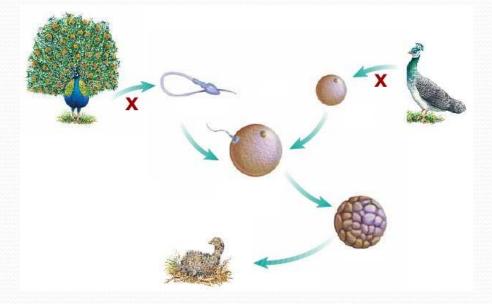
CHAPTER 9 Sponges, Cnidarians, and Worms

Section 1: What is an animal?

- Multicellular that feed on other organisms
- STRUCTURE- levels of organization of cells
 - 1. Cells- basic unit of animal structure
 - 2. Tissues- many cells make up a particular tissue Example- bone, muscle, nerve
 - 3. Organ- group of different tissues Thigh bone contains bone, nerve, and blood tissue
 - 4. Organ Systems- group of organs working together Humans have 11 body systems

FUNCTIONS of ALL animals:

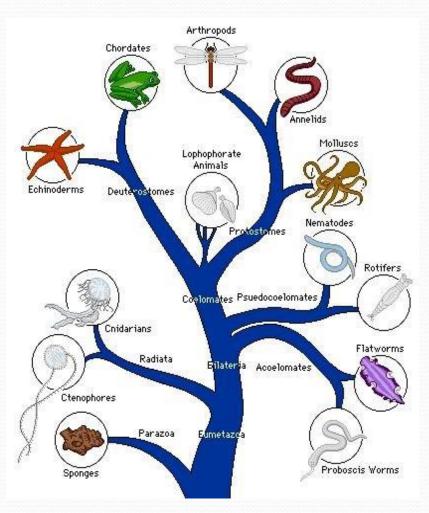
- 1. Obtain food and oxygen
- 2. Keep internal conditions stable
- 3. Move
- 4. Reproduce
- Animals are able to perform these functions because of particular ADAPTATIONS
 - Behavior or physical characteristic that allows organism to survive



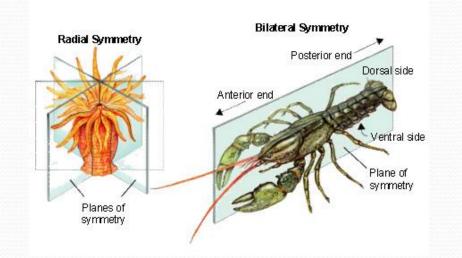
Special Adaptations

- The lion's archetypal roar is used to communicate with other group members and warn intruders of territorial boundaries.
- · Long, retractable claws help the lion to grab and hold prey.
- · The species' rough tongue helps it to peel the skin of prey animals away from flesh and flesh away from bone.
- · Loose belly skin allows the African lion to be kicked by prey with little chance of injury.

Reproduction


- Sexual Reproduction
 - two sex cells- sperm and egg
 - Fertilization-joining of the two cells
- Asexual Reproduction
 - Single organism produces identical offspring
 - EX: Sea Anemones

Classification of Animals


- 1.5 million species
- 35 major phyla
- Classified according to THREE criteria:
 - Body structure
 - Vertebrate- with backbone
 - 1 phylum
 - Invertebrate- without backbone
 - 97% of animal kingdom
 - Development throughout the life cycle

• DNA

Section 2: Animal Symmetry

- Symmetry- balanced arrangement of parts
- Types of symmetry:
 - Bilateral symmetry
 - One line that divides an object into mirror-like halves
 - Radial symmetry
 - Have many lines that all go through one central point

Animals with Radial Symmetry

- Sea stars, jellyfishes, sea urchins
- No distinct front or back ends
- All live in water
- Do not move very fast
 - Some stay in one spot
 - Others creep along the bottom
 - Some moved by water currents

Animals with Bilateral Symmetry

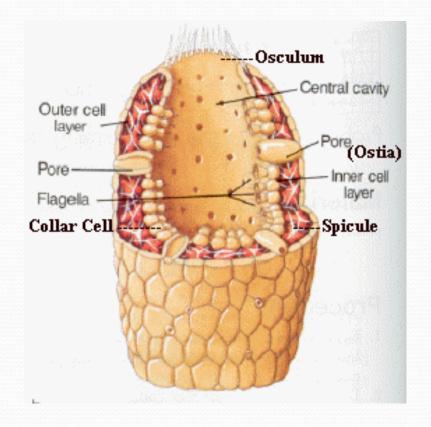
- True front and back ends
- Larger and more complex than radial sym organisms
- Streamlined body for quicker movement
- Sense organs in front end
- Adaptations to obtain food and avoid enemies



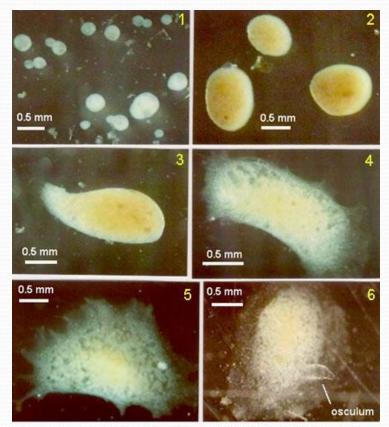
Section 3: Sponges and Cnidarians

• <u>Sponges</u>

- Found in oceans, freshwater lakes and rivers
- Adults are attached to hard surfaces underwater
- Water currents responsible for:
 - Carrying food and oxygen to sponge
 - Taking away waste products
 - Reproduction and offspring transport


Sponge-Body Structure

- Invertebrates with no body symmetry
- No tissues or organs
- Belong to phylum Porifera ("having pores")
 - Pores for material transport
- Spikes to support soft body + defend against predators


Obtaining Food and Oxygen

- Eat single-celled organisms by filtering water that passes through them
- Collar cells line the central cavity and trap food
- Jelly-like cells digest the food

Reproduction

- Able to reproduce both asexually and sexually
- Asexual by budding
- Sexual- no opposite sexes
 - One sponge can produce both sperm and egg cells
 - Sperm cells released into water and float into another sponge where the eggs are fertilized
 - Larva develops
 - Immature form of animal that looks very different from adult

Reaggregation of cells and tissue in a disintegrated freshwater sponge. Small reaggregated masses coalesce into large spheres (panels 1&2). By one week, spheres flatten out and attach to substrate (panels 4-6).

Cnidarians

- Jellyfishes, corals, and sea anemones
- Invertebrates with stinging cells to:
 - Capture food and bring into central cavity
 - Defend themselves
- Obtaining Food
 - Use stinging cells to obtain food
 - Use tentacles to pull prey into its mouth

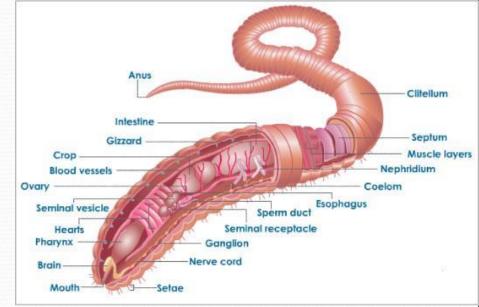
Cnidarians- Body Structure

Characteristic	POLYP	MEDUSA
Radial symmetry	YES	YES
Central Hollow Cavity	YES	YES
Tentacles with stinging cells	YES	YES
Body plan	Vase-shaped	Bowl-shaped
Structure location	Mouth open at top	Mouth opens downward
Example	Sea anemone	jellyfish

Movement and Reproduction

- Cnidarians can move to escape danger and get food
 - Jellyfishes swim
 - Hydras turn slow somersaults
 - Sea anemones stretch out, shrink down and bend slowly
- Movement directed by nerve cells
- Reproduce both asexually and sexually
 - Asexual by budding
 - Two ways of sexual:
 - One organism with two sexes
 - Individuals of each sex

Life in a Colony


- Colony
 - group of many individual animals living together
- Examples:
 - Stony Corals form a coral reef
 - Portuguese Man-of-War
 - Contain as many as 1,000 individuals functioning as one unit

Section 4: Worms

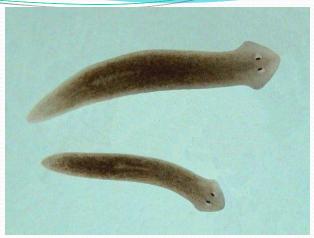
- Invertebrates with long bodies and no legs
- Bilaterally symmetrical
- Have brains- knot of nerve tissue at head end
- Can reproduce either asexually or sexually
 - Asexual by:
 - Having both sex organs
 - Breaking into pieces
 - Sexual by fertilizing eggs

Classification of Worms

- Divided into 3 major phyla:
 - Flatworms (Platyhelminthes)
 - Roundworms (Nematoda)
 - Segmented worms (Annelida)

Platyhelminthes-

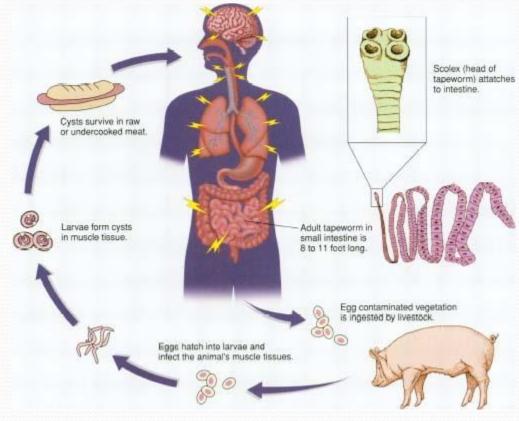
Flatworms


- Flat and soft as jelly
- Tapeworms, planarians, flukes

- Size- microscopic up to 10-12 meters long
- Some act like parasites living off of host organisms
- Rarely kill hosts
- Some are free-living organisms (planarians)
 - Does not live in a host
 - Slide and glide in water or over rocks in ponds

Planarian

- Free-living flatworm
- Obtaining Food



- Scavengers- feed on dead or decaying material
- Will also attack smaller organisms
- Eat like vacuum cleaners
 - Glides onto food and slides a feeding tube into organism
 - Digestive juices release via tube and into organism
 - Break down food and then is sucked up into planarian
- Have eyespots to detect light and cells to pick up odors

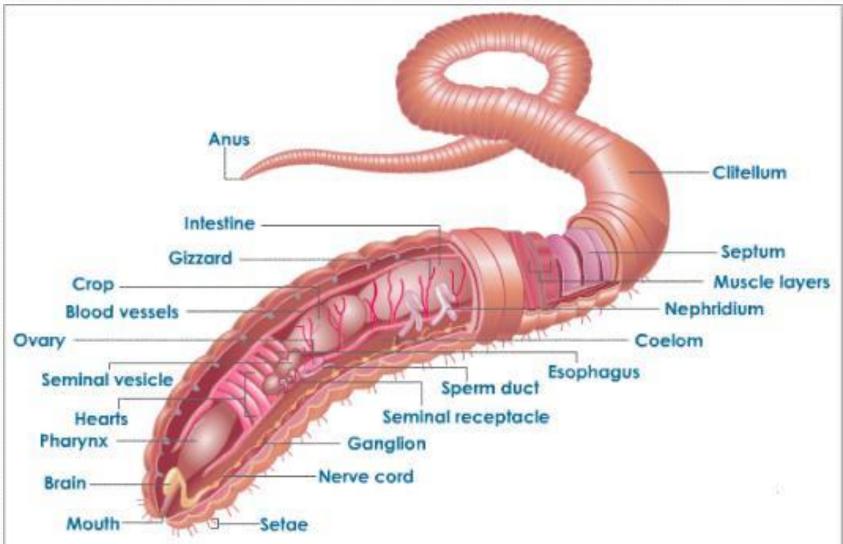
Tapeworms

- Parasitic flatworm
- Some able to live inside a human host
- Able to live in multiple hosts in a lifetime

Nematoda-

<u>Roundworms</u>

- Some free-living and some parasites
- Cylindrical bodies
- Efficient one-way Digestive system
 - a tube that opens at both ends
 - Food enters through mouth + exits through the anus
 - Process occurs in 3 orderly steps
 - Food broken down by digestive juices
 - Digested food is absorbed into animal's body
 - Wastes are eliminated



<u>Annelida-</u>

Segmented Worms

- Bodies are made up of linked sections called segments
- Contain nerve cord and digestive tube
- One-way digestive system with 2 openings
- Contain closed circulatory system
 - Blood moves only inside of blood vessels
 - Blood moves more quickly in this system

Worm anatomy

Earthworms

Must live in a moist environment

- Keeps the skin moist
- Obtain oxygen from the moisture on the skin

