PRACTICE: Measuring

Directions: Answer the following questions about LENGTH

1. What is the definition of length? \qquad
2. What is the standard metric unit for length? \qquad
3. Name 2 tools used to measure length. \qquad
4. How many millimeters long is Line A? \qquad
5. How many centimeters long is Line A? \qquad
6. How many millimeters long is Line B? \qquad
7. How many centimeters long is Line B? \qquad
8. How many millimeters long is Line C ? \qquad
9. How many centimeters long is Line C? \qquad
10. How much longer is Line A that Line B ? \qquad

Directions: Answer the following questions about VOLUME

1. What is the definition of volume? \qquad
2. What is the standard metric unit for volume? \qquad
3. Name 2 tools used to measure volume. \qquad
4. When measuring liquid volume, always measure at the bottom of the \qquad
5. What is the volume of liquid shown in the first four graduated cylinders below? What is the total volume in the fifth graduated cylinder?

6. If the diagrams for Graduated Cylinder 4 and 5 show the same graduated cylinder before and after the rock was added, what is the volume of the rock? \qquad
7. Why is it important to examine the unnumbered marks on a graduated cylinder before making a reading between the unnumbered lines?

Directions: Answer the following questions about MASS

1. What is the definition of mass? \qquad
2. What is the standard metric unit for mass? \qquad
3. Name the tool used to measure mass.
4. The mass of the container holding this soil sample is 3 g . What is the mass of the soil sample? \qquad
5. What is the mass of the soil sample if the combines mass of the soil sample and the container is 97 g and the mass of the container is 15 g ? \qquad
6. If you were measuring the mass of a 256 g object on a triplebeam balance, what would the middle beam read?

Directions: Answer the following questions about TEMPERATURE

1. What is the definition of temperature?
2. What is the standard metric unit for temperature? \qquad
3. Name the tools used to measure temperature. \qquad
4. What is the temperature in each of the diagrams below?
\qquad

\qquad
\qquad
5. The temperature of the beaker of water was $22^{\circ} \mathrm{C}$ at the beginning of an experiment. After 5 minutes, the temperature was $61^{\circ} \mathrm{C}$. What was the increase in temperature? \qquad
6. The students in your science class recorded the outdoor temperature every hour. At $9: 00 \mathrm{AM}$ it was $16^{\circ} \mathrm{C}$. By $2: 00 \mathrm{PM}$ the temperature had fallen to $9^{\circ} \mathrm{C}$. What was the temperature decrease? \qquad
7. Why is it important to include units with your temperature measurements?

Practice: Metric Conversions

1) $35 \mathrm{~cm}=\ldots \mathrm{m}$
2) $0.65 \mathrm{~L}=$ \qquad mL
3) $9.23 \mathrm{cg}=$ \qquad dg
4) $8.352 \mathrm{~N}=$ \qquad cN
5) $3 \mathrm{~cm}=$ \qquad dm
6) $6 \mathrm{dL}=$ \qquad L
7) $0.085 \mathrm{cg}=$ \qquad mg
8) $0.2 \mathrm{dN}=$ \qquad mN
9) $3 \mathrm{~m}=$ \qquad dm
10) $13.9 \mathrm{~L}=$ \qquad mL
11) $2.54 \mathrm{dg}=$ \qquad mg
12) $13.9 \mathrm{cN}=$ \qquad mN
13) $2.64 \mathrm{~cm}=$ \qquad m
14) $91.3 \mathrm{~L}=$ \qquad dkL
15) $4.3 \mathrm{~kg}=$ \qquad
16) $5 \mathrm{~km}=---$ \qquad
